

Enzyme Sugar-Ethanol Platform Stage 3 Plan

James D. McMillan

Gate 3 Project Review, Golden, Colorado January 31, 2002

Operated for the U.S. Department of Energy by Midwest Research Institute • Battelle • Bechtel

Stage 3 Plan Overview

- Multi-year phased approach with heavy industry involvement and guidance
 - Anticipate 3-4 year timeframe
- Extend analysis work initiated in Stage 2
 - Market assessment
 - Technoeconomic/financial assessments
 - Life cycle analysis
- Experimentally test or screen selected technology options and initiate integrated process development
 - Feedstock and process sample analysis
 - Pretreatment, enzymatic hydrolysis, and fermentation

∠Project Resources

- Stage 3 market, financial and LCA assessments
- Stage 3 process development
 - Key Objectives by Area
 - Feedstock/compositional analysis
 - Pretreatment
 - Enzyme
 - Fermentation Microorganism
 - Process Integration
- FY02 Milestones
- Participant roles and responsibilities (RACI)
- Conclusions

FY02 Financial Resources

• Budget: Still being finalized!

• Guidance: ~\$2.5 million total, ~9 FTE

• Breakdown:

- Labor ~\$2.0 million

- ODC: ∼ \$200K

Subcontracts: ~\$300K

• The fiscal year is already 1/3 over

FY02 Human Resources

- FTE breakdown (plan)
 - 0.50 Assess market, identify partner
 - 1.50 TEA (process engineering)
 - 0.25 Life cycle analysis
 - 1.00 Feedstock compositional analysis
 - 2.25 Pretreatment
 - 1.50 Enzyme testing and kinetic modeling
 - 1.50 Fermentation strain evaluation
 - 0.25 Explore process integration
 - <u>0.25</u> Produce residues and intermediates

9.00

- Project Resources
- **∠**Stage 3 market, financial, and LCA assessments
- Stage 3 process development
 - Key Objectives by Area
 - Feedstock/compositional analysis
 - Pretreatment
 - Enzyme
 - Fermentation Microorganism
 - Process Integration
- FY02 Milestones
- Participant roles and responsibilities (RACI)
- Conclusions

Market Analysis

- Increase depth and breadth of previous analyses to better understand market opportunities
 - Collectable amount of corn stover available based on LCA results
 - Ethanol value as gasoline blend stock (demand curve)
 - Impact of starch ethanol production expansion on corn, DDGS, and corn fiber prices
- Assess market risk by extending the analysis of different policy scenarios, including
 - MTBE phase out
 - RFG and oxy-fuel requirements
 - Renewable Fuels Standard
 - Other policy drivers

Technoeconomic Analysis

- With guidance from industry, refine conceptual process model and extend exploration and identification of attractive business scenarios
 - Which scenarios should we go further with?
 - What other scenarios should we evaluate?
- Extend process simulation capabilities to permit more rigorous multi-parameter sensitivities
 - Essential to provide direction to integrated process development
 - Enable "what if" analysis on impact of prospective co-products (biorefinery modeling)

Life Cycle Analysis

- Better understand soil sustainability
 - Continue LCA work to better understand the impact on corn stover removal on land use, soil health, greenhouse gas emissions, and water quality
- Level of funding unclear
 - Relatively small effort at NREL (~0.25 FTE)

- Project Resources
- Stage 3 market, financial, and LCA assessments

- Key Objectives by Area
 - Feedstock/compositional analysis
 - Pretreatment
 - Enzyme
 - Fermentation Microorganism
 - Process Integration
- FY02 Milestones
- Participant roles and responsibilities (RACI)
- Conclusions

Process Development Objectives

- Identify and understand key process interactions
- Evaluate strengths and weaknesses of top process configuration options identified through process modeling financial assessments
 - Down selecting to identify which to take forward will be guided by industry
- Demonstrate technical feasibility of integrated process performance targets
- Produce process samples for stakeholder and third party evaluation to assess potential co-product value

- Project Resources
- Stage 3 market and financial assessments
- Stage 3 process development

∠Key Objectives by Area

- Feedstock/compositional analysis
- Pretreatment
- Enzyme
- Fermentation Microorganism
- Process Integration
- FY02 Milestones
- Participant roles and responsibilities (RACI)
- Conclusions

Feedstock/Compositional Analysis

- Better understand feedstock composition
 - Extend existing methods to enable trace components not currently tracked to be quantified (e.g., uronic acids)
 - Improve existing methods for protein and lignin
 - Continue efforts to measure compositional changes during storage, particularly mass shrinkage
- Better understand pretreatment hydrolyzate composition
 - Extend existing methods to enable trace components not currently tracked to be quantified (solubilized lignin species, hydrolysis limit products, etc.)
 - Elucidate overliming detoxification mechanism

Compositional Analysis, cont'd.

- Leverage off Rapid Analysis project work to refine and develop methods facilitating more efficient process development
 - Improve robustness of near infrared spectroscopybased rapid analysis methods for analysis of raw, pretreated, and converted corn stover solids
- Incorporate FTIR methods if progress permits:
 - Rapid analysis methods for hydrolyzate liquors
 - In-situ pretreatment monitoring

Pretreatment

- Verify technical feasibility of operating at 30% solids and achieving performance yields targets
 - 85% hemicellulose sugar yields
 - 90% cellulose digestibility
- Produce pretreated corn stover
 - Supply stakeholders, as requested
 - Enable NIR calibration development
 - Enable enzyme and strain evaluations
 - Enable process integration work
- Re-assess economics and readiness of alternative pretreatment as new data becomes available.economics

Enzymes

- Work closely with Genencor and Novozymes to understand the probable characteristics of the next generation enzymes they are developing
 - This will help to guide process development, especially related to strains
- Test interim/new enzymes when they're available
 - Develop kinetic model of stand alone enzymatic cellulose saccharification to facilitate *in silico* optimization
 - Measure model parameters for new enzyme preparations as they become available
- Demonstrate efficacy of final enzymes in extended pilot scale operation using economical loadings

Fermentation Strains

- Screen candidate strains on pure sugars
 - Confirm performance attributes
 - Better understand sugar utilization patterns and rates
- Continue screening on corn stover hydrolyzates
 - Characterize hydrolyzate conditioning requirements
 - Confirm ability to use low cost nutrient sources
- Carry top strains into extended studies
 - Develop/demonstrate low-cost media
 - Explore/optimize process configuration
 - Demonstrate integrated performance (HHF or other)

Process Integration

- Initiate in 2nd year of Stage 3 after options narrowed
 - Pretreat at pilot scale to produce industrially representative material (i.e., high solids pretreatment)
 - Initially work on biologically-mediated steps at bench scale, moving to pilot scale with front-runner options
- Pretreatment/Fermentation
 - Explore real time processing (hydrolyzate stability)
 - Pretreat & Condition & Ferment
- Saccharification/Fermentation
 - Explore integration of top strains with available cellulases
- Pretreatment/Saccharification/Fermentation
 - Top options only

- Project Resources
- Stage 3 market and financial assessments
- Stage 3 process development
 - Key Objectives by Area
 - Feedstock/compositional analysis
 - Pretreatment
 - Enzyme
 - Fermentation Microorganism
 - Process Integration

∠FY02 Milestones

- Participant roles and responsibilities (RACI)
- Conclusions

FY02 Milestones

- Commercialization Path, Market & Financial Assessment
 - Strategy for industrial involvement (C, 4/02)
 - Assess market and pricing for corn-based ethanol during the period 2002 – 2010 (P, 7/02)
 - Establish combustion characteristics of process residue (S, 9/02)
- Feedstock
 - Updated NIR model for raw corn stover feedstock (S, 2/02)
 - Updated corn stover standard analytical protocols (LAPs) (P, 3/02)
 - Status report on corn stover-to-ethanol LCA modeling (P, 5/02)
 - Causative factors for compositional variability (C, 7/02)
 - Report on compositional stability (P, 8/02)

FY02 Milestones, cont'd.

- Pretreatment
 - Updated NIR model for stover process intermediate solids (S, 12/01)
 - Confirm pretreatment system readiness (P, 2/02)
 - Characterize pretreatment response surface (C, 9/02)
- Enzymatic Hydrolysis
 - Kinetic model for enzymatic saccharification (C, 4/02)
- Fermentation
 - Down select strains for further testing (P, 9/02)

Outline

- Project Resources
- Stage 3 market and financial assessments
- Stage 3 process development
 - Key Objectives by Area
 - Feedstock/compositional analysis
 - Pretreatment
 - Enzyme
 - Fermentation Microorganism
 - Process Integration
- FY02 Milestones
- **∠**Participant roles and responsibilities (RACI)
- Conclusions

Propos	ec	IS	sta	ge	3	P	ro	jec	et]	R.A	V C	\[\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	•	
	Core Project Participants								Other NREL Biofuels Projects					
Major Tasks	DOE EERE/OFD	DOEGO	NREL	ORNL	USDA ARS	USDA NRCS	Genencor & Novozymes	B/MAP	Industrial Partners	Rapid Analysis	Advanced Pretreatment	Strain Fundamentals	Enzyme Fundamentals	Industrial Partnerships
Supply feedstock	I		R					A/R			I			
Integrate technology	I		A/R						R					
Produce/distribute process intermediates	I		A/R	С	С	С	C		С	С		С	С	
Feedstock harvesting/handling	С	C	I	A/R	R	R		C	I					
Soil health and sustainability	С	С	I	C	A/R	R			I					
Life cycle analysis	С		A/R	R	R	R	C	C	C					C
Enzyme development	I		C				A/R		I				R	
Select industrial partner(s)	A/R		С						I					R

Unresolved Issues

- Coordination and ownership of tasks by all project participants is critical to success.
 - Need confirmation that USDA and ORNL accept and can execute the tasks proposed in the project RACI
 - High-level ownership of this project outside of DOE OFD and NREL doesn't yet exist but is critical to success
- Need to better understand what the actual enzyme costs will be (\$/gallon EtOH) after 10x cost improvement to better understand process economics
 - Compelling scenarios must be based on actual not assumed enzyme costs. Process performance data is needed.

Outline

- Project Resources
- Stage 3 market and financial assessments
- Stage 3 process development
 - Key Objectives by Area
 - Feedstock/compositional analysis
 - Pretreatment
 - Enzyme
 - Fermentation Microorganism
 - Process Integration
- FY02 Milestones
- Participant roles and responsibilities (RACI)

Conclusions

- Probably of success difficult to gauge, despite apparent technical feasibility of conversion process proper
 - Ownership and funding uncertain for key feedstock infrastructure and collection cost issues
 - Actual cost of final enzymes remains unknown
- Overall Stage 3 plan developed
 - Aggressive timeline and project plan
 - Detailed demo plant design probably needs to be pushed back one year so process better defined
 - Process integration progress requires effectively down selecting among many process options to a manageable few (keep work scope within resource constraints)

THANKS AGAIN FOR ATTENDING!

WE APPRECIATE YOUR PARTICIPATION!